Université de Batna 2

Faculté des Mathématiques et de l'informatique

Département d'Informatique Section : 2^{ème} Master IRCO

Durée: 120 minutes

Examen Final: Algorithmes Distribués

Questions de Cours (08 points)

- 1- Expliquer le principe de causalité dans les systèmes distribués.
- 2- Quelle sont les inconvénients d'un système distribué asynchrone ?
- 3- Expliquer le principe de l'algorithme de Ricart et Agrawala (1981).
- 4- Quelle sont les deux propriétés qui caractérisent la spécification d'une solution au problème d'exclusion mutuelle.
- 5- Quelle est la différence entre un système distribué synchrone et asynchrone ?
- 6- Donner les caractéristiques d'un détecteur de défaillances de la classe <> W.

Exercice N°1 (07 points):

Soit 4 processus interconnectés entre eux via des canaux et qui exécutent les séquences de pseudo-code suivantes :

	Processus P1		Processus P2		Processus P3		Processus P4
1.	z = receive(P2)	1.	x = 10	1.	z = receive(P2)	1.	z = receive(P2)
2.	z = z * 2	2.	send(x, P1)	2.	z = z + 6	2.	z = z + 4
3.	y = receive(P3)	3.	send(x, P3)	3.	send(z, P1)	3.	y = receive(P3)
1	z = z + y	ı	send(x, P4)			4.	z = z + y
5.	send(z. P2)	5.	z = receive(P1)			5.	send(z, P2)
		6.	y = z / 2				
		7.	z = receive(P4)				
		8.	y = z + y				

L'opération send(nb, Px) envoie la valeur de l'entier nb au processus Px.

L'opération nb = receive(Px) attend un message contenant un entier de la part du processus Px. L'entier reçu est placé dans nb.

- Q1. Dessiner le chronogramme correspondant à l'exécution en parallèle des 4 processus.
- Q2. Dater chacun des événements en utilisant la méthode de l'horloge de Lamport.
- Q3. Dater chacun des événements en utilisant la méthode de l'horloge de Mattern (vectorielle).
- Q4. Donner l'ordre total global défini par l'estampillage de Lamport.

Exercice N°2 (05 points):

- 1-Démontrer que les horloges de Lamport ne sont pas équivalentes à la causalité et que les horloges vectorielles sont équivalentes à la causalité ?
- 2- Démontrer que le consensus et la diffusion atomique sont deux problèmes équivalents ?

-GOOD LUCK-